F2_R: A TECHNIQUE FOR COLLAPSING F2_onset AND F2_mid INTO A SINGLE ACOUSTIC ATTRIBUTE

Daniel McCarthy and Jalal Al-Tamimi
Newcastle University, UK
d.mccarthy1@newcastle.ac.uk jalal.al-tamimi@newcastle.ac.uk

ABSTRACT

The formant information for identifying place of articulation in voiced plosives is conventionally represented using two acoustic attributes, namely F2_onset and F2_mid (e.g. [7, 9, 16]). This study compares the accuracy of such a technique with a new technique in which F2_onset and F2_mid are collapsed into a single attribute, termed F2_R. This method involves subtracting F2_onset from F2_mid, multiplying this frequency difference by a constant (c), and subtracting this product from F2_onset, yielding F2_R. Results from a discriminant analysis (leave-one-out cross-validation) show that F2_R can distinguish the place of articulation of /b d g/ at approximately the same rate as the conventional method using F2_onset and F2_mid.

Given that this result accords well with the 1950s locus theory [3], it suggests that the locus theory held an important insight that was neglected in phonetic science following Öhman’s [15] findings for VCV sequences.

Keywords: place of articulation, voiced plosives, formants, locus equations.

1. INTRODUCTION

It is well established that the most important formant-based information for distinguishing voiced plosives’ place of articulation lies in the second formant [16]. In particular, the frequencies of the second formant at vowel onset (F2_onset) and midpoint (F2_mid) have been recurrently used as attributes. One commonly used method of representing this information (e.g. [7, 9, 16]) is the locus equation, in which F2_onset is represented along the vertical axis and F2_mid along the horizontal axis for a variety of vowel contexts (with a line of regression fitted to the datapoints for each place of articulation).

The most striking finding of this research is that the regression lines for /b d/ show excellent fit to the datapoints [11]: for /g/ good fit is obtained if separate regression lines are plotted for front-vowel and back-vowel contexts [15].

The slopes of the regression lines for each place of articulation typically range from ca. 0.4 (for /d/) to 0.8 (for /b/) [16, p. 1314]. This indicates that F2_onset and F2_mid are moderately to highly correlated with each other, which suggests that some sort of collapsing of F2_onset and F2_mid into a single dimension might be feasible. Such an approach could minimize the number of features needed in speech recognition, an issue that has been noted by [14] and discussed lucidly by [4].

Has such a collapsing of F2_onset and F2_mid been proposed before? Indeed it has, and it is known as the locus theory [3, 8]. This theory posited that if a formant transition were traced backwards in time to approximately 50 ms prior to the beginning of the observed transition, then it would yield a frequency (F2_locus) that is specific to a given place of articulation, as shown in Figure 1:

Figure 1: Schematic diagram of the locus theory for a /d/ paired with a range of vowels that vary in backness. The F2 transitions for all the vowels begin at the same frequency of 1,800 Hz, at least if one traces their trajectory to an unobserved point in time approximately 50 ms prior to the vowel onset. This point is known as the F2 locus frequency (F2_locus). F2_locus is posited to lie at a different frequency for the three places of articulation. Source: [3], p. 771.

However, confidence in the F2_locus idea was shaken by Öhman’s [15] investigation of V1CV2 sequences, which found that coarticulation from V1 changed the formant transition in V2 such that the transition in no
way pointed to an invariant frequency. For example the V₂ formant transition in [ybo] pointed upward whereas the one in [obo] pointed slightly downward (p. 160). This undermined the locus-theory belief that the transitions for a given place of articulation (in this example, bilabial) should point to the same frequency regardless of the vowel.

There are, however, a few observations to note about Öhman’s study. The study was relatively small-scale (N = 225, all from a single speaker) and artificial: the study’s author repeated nonce VCV sequences three times in a monotone with the vowels stressed equally. Because of this, it remains something of an open question whether the acoustic coarticulatory pattern Öhman found is also found in more naturalistic speech. A recent study by McCarthy [12] (summarized in [13]), using a much larger dataset (N = 758) from 20 speakers reading real speech found that, unlike Öhman’s study, V₁ had only a modest acoustic influence on the F₂ onset of V₂ (the regression line between V₁,F₂ mid and V₂,F₂ onset had shallow slopes, to wit 0.12, 0.10 and 0.14 for /b d g/ respectively). Indeed, Lindblom and Sussman [11, p. 18] have argued that the widespread abandonment of the locus theory following Öhman’s VCV findings was unfortunate.

The second point is that the ‘locus’ in the locus theory does not have to be an exact, invariant, pinpoint frequency: rather, we can loosen the definition of the F₂ locus to encompass a frequency zone, not a frequency point. Under this conception the preoccupation with finding an F₂ locus for each place of articulation that is perfectly invariant is bypassed in favour of finding F₂ locus zones for each place of articulation that are reasonably distinct from each other, sufficiently distinct to distinguish place of articulation at a decent rate. This conception is in the spirit of Lindblom’s [10] championing of ‘sufficient discriminability’ in favour of invariance.

With all the above in mind it seems a revival of the (reframed) locus theory is warranted. The rest of this paper tests the locus theory by comparing the ability of F₂ onset (and F₂ mid) to distinguish place.

2. METHODOLOGY

2.1. A formula for F₂R

We begin by presenting a formula for exploring F₂ locus. Figure 1 illustrates the following generalization about all the /d/’s F₂ transitions: the larger the difference in frequency between F₂ onset and F₂ mid, the larger the difference in frequency between F₂ onset and F₂ locus. This means that if we want to change F₂ onset into F₂ locus using F₂ mid, the degree to which F₂ onset will have to change will depend on how large the difference in frequency is between F₂ onset and F₂ mid. In other words, the first part of our technique is to subtract F₂ onset from F₂ mid:

\[
\text{F₂ difference} = \text{F₂ mid} - \text{F₂ onset}
\]

The second part of the technique is to subtract this F₂ difference from F₂ onset:

\[
\text{F₂ reconstructed} = \text{F₂ onset} - \text{F₂ difference}
\]

The output of (2) can be imagined as extrapolating the F₂ transition backwards in time. Remember, however, that because we do not observe F₂ locus, there is nothing to tell us exactly how far back in time we should go to obtain F₂ locus. In Figure 1 above, the amount of time required (i.e. the part labelled ‘silent interval’) is 50 ms, but this is a schematic diagram of artificial stimuli, not an empirical fact. Thus it seems wise to run a variety of F₂ locus formulae in which the degree to which F₂ difference modifies F₂ onset is varied by using a constant. Let us rewrite (2) as follows:

\[
\text{F₂ reconstructed} = \text{F₂ onset} - (\text{F₂ difference} \times c)
\]

We shall refer to the family of attributes derived from (3) as “F₂ reconstructed”, or “F₂R” for short. The value of c will vary in increments of 0.2 from 0 to 3 to explore the space thoroughly, yielding 16 variants of F₂R.

2.2. Materials and Analysis

Speakers: 10 male and 10 female speakers of different varieties of British English were recruited. Their ages ranged from 18 to 38 at the time (2016). Accents represented included Yorkshire, Mancunian, Scouse, Geordie, Cockney, RP, and north Wales.

Recording: the material was read in an anechoic booth using a Roland Edirol R44-4 4-channel portable recorder, linked to a Roland Edirol CS-50 microphone (settings: ‘lo cut’ and ‘focus’). Sampling frequency was 44.1 kHz with 16-bit quantization.

Material: 84 sentences were presented one by one on a screen to be read aloud. The subject matter was various everyday topics and the sentences were designed to contain as many plosives as was reasonable (ca. 14 per sentence). This yielded a corpus of 7,147 tokens. Some of these tokens were excluded (e.g. [?] was not examined). Note also that the present paper is concerned only with the voiced prevocalic tokens in the corpus (N = 1,535). Vowels: front = 826, central = 280, back N = 429. Schwa tokens are not included in the present analysis.

Segmentation: each plosive, along with the preceding and following segment, was segmented
manually in Praat [2]. Five tiers were used: attribute, allophone, phoneme, word, and comment.

Measurements: F1, F2, and F3 frequencies were extracted from the onset and midpoint of the following segment and the offset and midpoint of the preceding segment. All data were extracted using a Praat script created by the second author.

Statistics: discriminant analyses (leave-one-out cross-validation) [5] were run in which /b d g/ were the three outcome variables and each variant of the F2_R attribute was the predictor. The statistic quantifies the percentage of tokens classified correctly when each token is classified using all the dataset other than that token.

3. RESULTS

We begin with the results when F2_R is used without any speaker normalization.

Figure 2: Cross-validated classification accuracy of F2_R for distinguishing prevocalic /b d g/. The green bar shows the classification accuracy of F2_{ons+mid}; the red bar (‘ons+mid’) shows the accuracy when F2_{ons} and F2_{mid} are separate attributes; and the blue bars represent the variants of F2_R, namely c = 0.2 to 3 increasing in increments of 0.2. N = 1,535.

The classification accuracy of all variants of F2_R surpasses that of F2_{ons+mid}. This suggests that the 1950s locus theory held an important insight about formant transitions: when F2_{mid} is higher in frequency than F2_{ons}, F2_{ons} is dragged up whereas when F2_{mid} is lower in frequency than F2_{ons}, F2_{ons} is pulled down, and the size of this shift is proportional to the size of the frequency difference between the two.

Perhaps more importantly, the classification accuracy of F2_R at its strongest (for values of c = 1, 67.3%) is very similar to that of F2_{ons+mid} (68.1%). It seems again, then, that F2_{ons} and F2_{mid} can be collapsed into a single attribute with little compromise of classification accuracy.

F3 is the other formant that provides information on place of articulation [17, pp. 250-251]. Here are the results when the F_R procedure is applied to F3:

Figure 3: Comparison of the classification accuracy of F2_R when normalized (F2_R – μF3_{individual}) with the unnormalized data from Figure 2. N = 1,535.

Unsurprisingly the normalization improves the classification accuracy, by 2 to 3 percentage points. More interestingly we again see that the classification accuracy for normalized F2_R at its strongest (for c = 1, 67.3%) is very similar to that of F2_{ons+mid} (68.1%). It seems again, then, that F2_{ons} and F2_{mid} can be collapsed into a single attribute with little compromise of classification accuracy.

F3 is the other formant that provides information on place of articulation [17, pp. 250-251]. Here are the results when the F_R procedure is applied to F3:

Figure 4: Comparison of the classification accuracy of F3_R with and without normalization by individual speaker (F3_R – μF3_{individual}). N = 1,535.
Unlike what we saw for F2, the classification accuracy of (normalized) F3 onset is not increased by the inclusion of F3 mid. Because of this, the classification of F3R does not exceed that of F3 onset.

Segregating the classification of back and non-back vowels improves the classification of F2R considerably:

Figure 5: Classification accuracy of normalized F2R before and after separation by vowel backness. The results for non-back and back were run separately and summed. N = 1,535.

The peak classification accuracy of F2R improves by 6 percentage points with the separation by vowel backness. Presumably this improvement is a result of the fact that velars’ F2 transitions have long been known to point to different locus frequencies before front vowels and back vowels [3]. Hence separating by vocal backness presumably prevents the two velar loci from being mixed together.

4. DISCUSSION

Our main finding is that the reduction of F2 onset and F2 mid to a single dimension is possible and produces an attribute with about the same classification accuracy as F2 onset and F2 mid. This accords well with the 1950s locus theory which, as we saw in the Introduction, posited [3] that despite the smearing together of two phonemes’ information in a formant transition, some semblance of invariance can be extracted from the transition if the imaginary F2 locus frequency is used as output rather than the observed F2 onset and F2 mid frequencies. Nevertheless, we have cautioned against imagining F2R (or F2 locus) as yielding a pinpoint of a locus that is entirely free from vowel-induced coarticulation; F2R mitigates coarticulation, it doesn’t remove it. This eschewing of absolute invariance is along the lines of Lindblom’s [10] notion of sufficient discriminability.

One might wonder how plausible it is that imaginary frequencies be used in speech recognition. An analogy from vision might help. In Figure 6 the tiles labelled A and B are physically of identical intensity. Perceptually, however, A looks dark grey whereas B looks whitish. This is due to a perceptual mechanism in the visual system known as colour constancy [19], which separates out the distortion of lighting conditions on the colours of objects. Because of colour constancy, medium grey is perceived as dark grey if the surrounding context is bright (tile A in Figure 6) but the very same shade of grey is perceived as whitish if the surrounding context is dark (tile B) [1]. Analogously, F2 onset is 1,750 Hz in both the syllables [be:] and [do:] but is perceived as bilabial in one and alveolar in the other. Just as the perceptual phenomenon of colour constancy makes a given light intensity darker in bright contexts and brighter in dark contexts, F2R makes F2 onset lower in frequency in high-frequency contexts and higher in low-frequency contexts.

Figure 6: Analogy of colour constancy and F2 onset variation. [1]

The results of the present study suggest that the locus theory held an important insight about how to mitigate the redundancy between F2 onset and F2 mid.

5. CONCLUSION

Given the moderate to high correlation between F2 onset and F2 mid that has long been documented by locus-equation studies [8, 6, 14] this paper has collapsed F2 onset and F2 mid into a single acoustic attribute (F2R), drawing inspiration from the 1950s locus theory [3]. It has been shown that such collapsing of F2 onset and F2 mid yields an attribute with approximately as strong a classification accuracy as F2 onset and F2 mid. Given the abstract similarity of F2R to how colour constancy functions in vision, it is not implausible that an analogous mechanism could be found in speech perception.

6. ACKNOWLEDGEMENTS

Much of present paper is adapted from the first author’s PhD thesis [12]. This research was funded by the United Kingdom’s Economic and Social Research Council (award reference 1506273).
7. REFERENCES

\footnote{Hasegawa-Johnson [6, p. 25] notes that studies of /b d g/ have typically yielded classification accuracies of 65% to 70%. The present result is thus well within the normal range of classification accuracy. The higher accuracy (77%) found by one study [16] may be due to the highly controlled nature of their stimuli, viz. /CVt/ words repeated five times in a carrier phrase.