An investigation of the effect of L1 dialect on the L2 perception of lexical stress

Hyunjung Lee¹, Eun Jong Kong², Jeffrey J. Holliday³
¹Incheon National University, ²Korea Aerospace University, ³Korea University
¹hjlee123@inu.ac.kr, ²ekong@kau.ac.kr, ³holliday@korea.ac.kr

ABSTRACT

This study explores the effect of Korean learners’ native dialect in discriminating English stress patterns. The nature of Kyungsang Korean (KK; lexical pitch-accent dialect) yields a prediction that KK learners of English would outperform Seoul Korean (SK) learners in identifying English stress, as KK speakers are more sensitive to f0 variation, an acoustic dimension of English stress. We administered two ABX discrimination tasks to three groups of participants (37 KK, 40 SK, 16 L1 English) to examine their accuracy in perceiving English stress location. The tasks consisted of English and Korean nonce words varying in the type of pitch accent. Results showed that the group-averaged accuracies for KK were lower than those for SK, indicating KK’s use of f0 in their native dialect did not positively influence their identification of English stress. Our further acoustic examinations of f0 supported this characterization.

Keywords: pitch accent dialect, stress language, ABX discrimination, non-native perception

1. INTRODUCTION

It is well known that individual learners perform differently in learning L2 sounds depending on various learner-internal and -external factors, with the phonological grammar of the learners’ L1 being one of the most important [2, 3, 9, 10]. Given this, it is speculated that phonological variation across dialects of the same L1 might influence L2 learners’ speech perception [4]. Many previous studies, however, have assumed some degree of L1 homogeneity, neglecting L1 dialectal variation (although see [4], [6], and [7] for studies examining such effects in L2 vowel perception, and who argue that researchers should pay closer attention to L1 dialectal differences). The purpose of this study is to examine the effect of L1 dialect on the perception of non-native suprasegmental properties.

In this study, we examined whether and how the different tonal systems of Korean dialects affected the non-native perception of English lexical stress by comparing the perception pattern between non-tonal Seoul and tonal Kyungsang dialect speakers of Korean. Kyungsang Korean is different from standard Seoul Korean in that it is a lexical pitch accent variety in which segmental homophones are distinguished by differing the location of an accented syllable or f0 peak in otherwise similar words (e.g., kaci ‘type (HL)’ vs. kaci ‘eggplant (LH)’) [11, 14]. On the one hand, while Seoul and Kyungsang Korean speakers share the same first language, the dialectal difference regarding the tonal system renders the use of f0 different for lexical disambiguation. On the other hand, f0 is used somewhat similarly between Kyungsang Korean and English (i.e., a stress-timed language where f0 is used to indicate post-lexical prominence) even if they are two separate languages.

The dialectal difference in the L1 (i.e., the tonal differences between Seoul and Kyungsang Korean) and the similarity between one L1 variety and the L2 (i.e., the use of f0 in Kyungsang Korean and English) raise several hypotheses. If Kyungsang listeners’ use of f0 for lexical disambiguation does not facilitate the perception of English stress, this lack of dialectal effect would result in similar patterns of stress perception between Kyungsang and Seoul Korean learners of English. On the other hand, if the effect of L1 dialect exists, we might expect different patterns of English stress perception between Kyungsang and Seoul Korean listeners. Particularly focusing on the use of f0 in facilitating the L2 learning of lexical stress, this study compared the perception patterns across three groups native dialect and language listeners: Seoul Korean (SK), Kyungsang Korean (KK), and American English (EN). We adopted an ABX discrimination task [8] with nonce words in Korean and English. Based on cross-linguistic and dialectal comparisons, this study aims to broaden our understanding of the role of individual-level phonology in L2 speech perception.

2. METHOD

2.1. Participants

A total of 93 subjects completed the present perception experiment: 37 KK (16 males), 40 SK (20 males), 16 EN (4 males). Subjects were paid for their participation. The mean age of the KK, SK, and EN groups was 22.7, 23.3, and 21.1 years old,
respectively. The English-speaking participants were speakers of midwestern American English. The KK and SK participants were all born and educated in the target dialect regions: the city of Changwon, where the South Kyungsang variety of Korean is spoken, and the Seoul and Kyunggi regions where standard Seoul Korean is used. Subjects reported no language or hearing problems.

2.2. Stimuli

Two sets of stimuli were created: English nonce words and Korean nonce words. For the English nonce word set, we created three disyllabic nonce sequences of segments (/bu.ʃi/, /sɔɾ.ʃu/ and /ban.tɛk/) produced by two phonetically-trained male native speakers of midwestern American English; the speakers were instructed to produce the three nonce words stressing the first syllable in one version, Strong-Weak (SW) and stressing the second syllable in the other version, Weak-Strong (WS). The two repetitions provided a total of twelve unique nonce word audio stimuli. Similarly, three disyllabic Korean nonce words (/pʰu.ɕɔn/, /ca.ku/ and /pn.nɛk/) were presented to two male native KK speakers, who produced the nonce words twice while varying the pitch accent type between HL and LH. A total of 24 English nonce word stimuli (3 nonce words × 2 stress types × 2 speakers × 2 repetitions), and 24 Korean nonce words (3 nonce words × 2 pitch accent types × 2 speakers × 2 repetitions) were used for the ABX discrimination tasks.

2.3. Acoustic measurements

We measured the $f0$ peaks of the stimuli used in the perception experiment to examine how the three groups of listeners used $f0$ in discriminating stress patterns in their L1 and L2. The vowel portion of each disyllable was first determined from the onset of the first full period to the offset of F2. Peak $f0$s were measured within the vowel for each token. We used a Praat script for the measurement, manually checking each value. $f0$ was first measured in Hertz, and then converted into semitones to normalize inter-speaker global pitch differences. The difference between the peak $f0$s (i.e., peak $f0$ in S/H minus peak $f0$ in W/L) was operationalized as the pitch prominence of the token.

2.4. Tasks and procedure

The three groups of participants completed two sessions of ABX discrimination task (English and Korean) presented on a notebook computer and programmed in E-Prime ver. 3.0 [12]. In both tasks, the stimuli in each trial were triplets of nonce words differing in segments and with either A or B having the same pitch accent/stress pattern as X. For example: A /bu.ʃi/, B /sɔɾ.ʃu/, X /ban.tɛk/. Participants were instructed to attend to the rhythmic pattern of each word in the triplets and indicate whether the rhythm pattern of X was the same as that of A or B by using the mouse to click a button on the screen labelled <A> or .

2.4. Analysis

We examined patterns of accurate responses and the role of $f0$ in accounting for the accuracy patterns by constructing two different kinds of logistic mixed-effects regression models. The models of response accuracy were built separately for each pitch accent/stress types (HL vs. LH, SW vs. WS) where correct/incorrect responses (DV) were predicted by a fixed effect of the answer types (X=A, and X=B). The intercept and the slope of answer type were allowed to randomly vary at both the listener level and talker level. The other type of model was built to estimate the coefficient of $f0$ in X ($f0$.X: peak $f0$ difference between S/H and W/L syllables) in explaining accuracy. We entered the random intercept and slope of $f0$.X at the listener level and the random intercept at the talker level. The models were implemented using the lmer() function in the R platform [1, 13].

3. RESULTS & DISCUSSION

Accuracy patterns were examined by the statistical models of each language session (Korean and English). Figure 1 displays the estimates from the models where the group-averaged accuracies were assessed by the pitch accent/stress type (S/H and W/L) of the word X and answer types (X=A and X=B).

One global tendency across the three listener groups was that accuracies were higher when X was identical to B (solid bar) compared to when it was identical to A (dashed bar), although the magnitudes of the accuracy differences differed across listener groups and the types of pitch accent/stress. Separated by the pitch accent type of X, there were no accuracy differences among the three listener groups in the HL type (left-side bars): βdiff$_{[KK-EN]}$ = -.13, SE = .59, $p = .81$, βdiff$_{[KK-SK]}$ = .51, SE = .47, $p = .28$. That is, neither Kyungsang listeners (KK) nor English native listeners (EN) outperformed Seoul listeners (SK) even though they are lexical pitch-accent dialect and stress language users. Similarly, in the LH type in X, accuracies were estimated to be not significantly different among the listener groups (βdiff$_{[KK-EN]}$ = .041, SE = .54, $p = .93$, βdiff$_{[KK-SK]}$ = .19,
accurately discriminating the prosodic properties in
estimate listeners’ sensitivity to
A series of
this puzzle of inconsistent role of linguistic
event session and English listeners in the English session
no worse than Kyungsang listeners in the Korean
help
native speakers
to reflect
the two
estimates were not significantly different between
the least accurate in all analysis conditions. Models
yielded significant differences of accuracy estimates
between KK listeners and the others in the both
stress types: \(\beta.\text{SW.B}_{[\text{KK}-\text{EN}]} = -1.1, \text{SE} = .51, p < .05; \)
\(\beta.\text{SW.B}_{[\text{KK}-\text{SK}]} = -.95, \text{SE} = .38, p < .05. \) Seoul listeners
were not shown to be any less accurate than the
native English listeners, however, as the accuracy
estimates were not significantly different between
the two listener groups: \(\beta.\text{WS.A}_{[\text{SK}-\text{EN}]} = -.35, \text{SE} = .73, \)
\(p = .46. \)

In the current study, the accuracy patterns seemed to
reflect a fairly inconsistent role of linguistic
experience in prosody discrimination. For one, the
fact that the Korean nonce words were spoken by
native speakers of their own dialect/language did not
help the Kyungsang listeners, but did help the
English listeners to perform better in the
discrimination tasks. Also, Seoul listeners performed
no worse than Kyungsang listeners in the Korean
session and English listeners in the English session
even though none of the tasks presented audio
stimuli spoken by Seoul dialect speakers. To resolve
this puzzle of inconsistent role of linguistic
experience in performing prosody discrimination,
we further investigated the role of \(f0 \) sensitivity in
explaining the accuracy scores.

Figure 1: Accuracy rates of ABX tasks averaged
across sessions (Korean and English nonwords),
accent types of \(X \) (first syllable and second
syllable accented), and correct answer locations (A
and B).

A series of lmer models were constructed in order to
estimate listeners’ sensitivity to \(f0 \) in the word \(X \) in
accurately discriminating the prosodic properties in
the word \(A \) and word \(B \). Table 1 summarizes the
parameter estimations from the models, and Figure 2
illustrates the distributions of accuracy rates of the
stimulus token \(X \) against the peak \(f0 \) differences
between the two syllables in \(X \): peak \(f0 \) (H or S)
minus peak \(f0 \) (L or W).

In the Korean session, the model produced a
significant coefficient of \(f0.X \) for the KK group. The
positive coefficient indicates that the responses were
likely to be correct as the token \(X \) has a greater peak
\(f0 \) difference between the H and L syllables. The
magnitudes of the \(f0.X \) coefficients for the groups of
KK (\(\beta.\text{SK} = .096, \text{SE} = .047, p < .05 \)) and EN (\(\beta.\text{EN} = .038, \text{SE} = .063, p = .60 \)) were smaller than that of
KK. This suggests that KK listeners were more
sensitive to the acoustic cue of dramatic pitch
excursion in performing the prosody discrimination
task. It is noted that for the EN group, \(f0.X \) was not a
significant variable in predicting the accuracy
patterns.

In contrast, the model for the English session
returned no significant coefficient of \(f0.X \) for the KK
(and SK, \(\beta.\text{SK} = .028 \)) listeners but a significant
coefficient of \(f0.X \) for the EN group (\(\beta.\text{EN} = .087, \)
\(\text{SE} = .026, p < .001. \) Coefficients of \(f0.X \) were
greater in EN, SK, and KK, in that order. A positive
coefficient of the EN group suggests that a bigger
pitch expansion in the word helped the EN listeners
to correctly discriminate the prominence patterns in
the stimuli.

This pattern in the output of the statistical models
is well illustrated in Figure 2, where similar degrees
of slope steepness were observed in KK and SK.
That is, Kyungsang and Seoul Korean listeners
patterned similarly in utilizing \(f0 \) information in
prosody discrimination of both Korean and English
nonce words, which differed from English listeners’
use of \(f0 \). This supports a lack of a dialectal effect in
the perception of non-native language prosody.

Although there was no evidence of a dialectal
effect in the current study, there seems to be some
effect of familiarity with the auditory source in
accessing to the \(f0 \) information. While both English
and Kyungsang listeners are supposed to be sensitive
to \(f0 \) due to the prosodic properties of their native
varieties, their full usage of \(f0 \) information was
consistently conditioned to the stimulus languages.
This might imply that the application of \(f0 \)
sensitivity to non-native perception is not
necessarily an automatic process.

Table 1: Output of the logistic mixed-effects
regression models where **Accuracy** was predicted
by the \(f0.X \) variable with **Listener Group** as an
interaction. The reference level of the **Group**
variable is Kyungsang Korean. **SK** = Seoul Korean,
and **EN** = English native listeners.
Table 1: Model summary for the L2 learners' performance on the English nonce word task. The values in the table are estimates of the fixed effects, with standard errors (SE) in parentheses. The * symbol indicates significance at the .05 level.

| Effect | Estimate | SE | z value | Pr(>|z|) |
|----------------------|----------|---------|---------|----------|
| (Intercept) | 1.568 | 0.259 | 6.03 | < .0001 |
| /θ/.X | 0.019 | 0.014 | 1.39 | .162 |
| EN | 0.754 | 0.461 | 1.63 | .102 |
| SK | 0.831 | 0.350 | 2.37 | .018 * |
| /θ/.X:EN | 0.067 | 0.026 | 2.50 | .012 * |
| /θ/.SK | 0.008 | 0.019 | 0.42 | .67 |
| <Korean nonwords> | | | | |
| (Intercept) | 1.446 | 0.253 | 5.71 | < .0001 |
| /θ/.X | 0.101 | 0.047 | 2.10 | .035 * |
| EN | 0.348 | 0.391 | 0.89 | .37 |
| SK | 0.262 | 0.299 | 0.87 | .38 |
| /θ/.X:EN | -0.062 | 0.064 | -0.97 | .33 |
| /θ/.X:SK | -0.004 | 0.050 | -0.08 | .93 |

Figure 2: Distributions of averaged accuracy as a function of peak f0 differences in X.

It should be mentioned that our current analysis is limited to the f0 aspect of the stress in English because f0 is a shared parameter between English lexical stress and Kyungsang Korean pitch accent. In addition, the English proficiency of the Seoul and Kyungsang Korean learners was not considered a variable in the current analysis. These limitations might resolve the puzzle of Seoul listeners’ high accuracy in the English nonce word task despite their lack of reliance on f0. We plan to extend the scope of the acoustic analysis to other acoustic properties of English stress such as intensity, duration and vowel enhancement and reduction, so that the discrimination accuracy of Seoul listeners can be better explained.

4. CONCLUSION

This study explored the effect of Korean learners’ native dialect in discriminating English lexical stress patterns. The experimental evidence presented in the current study did not support the hypothesis that an L2 learner’s first language dialect has a significant effect on the L2 perception lexical stress. The findings imply that sensitivity to phonological cues in a native dialect is not automatically transferred in non-native perception.

These results run somewhat counter to those in [4] and [7], which investigated native dialect effects in L2 vowel perception. Further work is needed to investigate whether segmental and suprasegmental properties of native dialects are accessed differently in L2 perception.

5. ACKNOWLEDGEMENTS

The authors would like to thank Kelly Berkson, Jieun Kang, Hyangwon Lee, and Bokyung Park for assistance in both the recruiting and testing of participants. This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2017S1A5A2A03068448).

6. REFERENCES

